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Abstract: We consider the general Phase I linear programming problem with a

convexity constraint which can be written after some algebraic manipulation in the

form:

Find xj __O, ,Pjzj = 0, "2xj = 1

where Pj are m-vectors satisfying jPII = 1. If feasible, von Neumann's Center of
Gravity Algorithm generates a sequence t = 1,2,... of approximate solutions

Pjxt = bl, Fz = 1, x > 0 which converges in the limit as t -*oo to a feasible

solution to the Phase I problem. We assume that all perturbed problems F' Pjzx = b,

xj = 1, xj > 0 are feasible for all I1 11 < r where r > 0 is given. We apply this algorithm

to m + 1 perturbed problems with right hand sides b = V, i = 1,2,...,m + 1 to obtain an

exact solution to the unperturbed problem with b = 0 in T < 4r-2 (m + 1)3 iterations.

Each iteration consists of m(n + 3)b multiplications and additions where b is the non-

zero coefficient density.

Von Neumann* in 1948 proposed the first interior algorithm for solving a general
Phase I linear program with a convexity constraint. We will reproduce his proof that in

i < 1/p 2 iterations an approximate solution ,Pjk = b will be generated with IIb'll < p.
When applied to a perturbed problem b = b -0, we will show that in t < 4/p2 iterations
an approximate solution will be generated with lib'- bll < p.

* verbal communication



Geometrically, in the m-space of the columns, since IPJ = 1, all points Pj lie on

the surface of the m-dimensional hypersphere So of unit radius with center at the origin.

We are given r the radius of a concentric hypersphere S1 g So centered at the origin

that lies in the convex hull of the points P. Thus r is a measure of how deeply the

origin is embedded in the set of b such that b = E Pjxj, xj _ O, E xj = 1 is feasible.

To generate the m + 1 different finite sequences (xt, bt) whose bt approach m + 1

different points Pi, the 1' are prechosen. These can be the vertices of any simplex lying

in the set of feasible b that contains the origin as an interior point. We choose 1i to be

the vertices of an (m + 1) equilateral simplex whose center is the origin and whose

vertices are located at distances r . m/(m + 1) from the origin; for example the

coordinates of bi may be chosen as follows:

(1) bm+1 = [ 0 0 ... 0 mamI] T

- [ 0 0 -am- 1  -am ] T

= [ 0 +2a 2  .. . -a- -am]T
= [ a, -a 2  ... . am-, -am] T

1 [-a, -a 2  .. . -am-, -am]T

where ai rX+l i(i+1)

P,

Figure 1. The Iterations Converge to & Instead of the Origin 0.
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When the 0ah sequence (zt, bt) (which is converging towards Pi) reaches a point

Y = i such that lbP - i < r/(m + 1), the sequence for that i is terminated. Note that
all interior points of Ball, of radius p=r/(m+ 1) centered at 1' lie inside the

hypersphere S1 C So. We will show b = P' C Ball, is attainable by the iterative process.

Associated with b is the approximate solution Y' = xt that generated it. Thus an upper

bound to generate all m + 1 approximate solutions ( , i) whose P9 lie strictly in m + 1

p-balls centered at 1' can be done in

(2) iteration count < 4(m + 1)/p 2 = 4(m + 1) 3/r 2 , p = r/(m + 1),

iterations. The final step is to generate the feasible solution T to the Phase I problem by

finding weights > 0, t = E Y _0, Ej = 1, 1, EPjj = 0. These weights

= (XI, X2 ,.. ., m+1) are found by solving the (m + 1) x (m + 1) system

(3) ybi- 0

We will prove that this system has a unique solution X = (,,..., m+l) > 0.

We now describe the detailed steps of von Neumann's algorithm for finding an

approximate solution to a perturbed problem E Pjj = b, Exj =1, x > 0 and give a

proof of the rate of convergence of the i-th sequence to some b = Pi C Bi. We initiate the

sequence of iterations by x = xi = (1,0,...,0), b1 = P 1. Inductively let x' - ', b - 1 be the

t - 1 approximation. We use it to generate xt , bi.

b=C % 1

.00

\
I

i '"7 At. la<2 02 /l

b 1 = A H :b B = P,

Figure 2. The Von Neumann Iterative Step
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Referring to Figure 2, Po is selected as that Pj such that Pj - & makes the sharpest

angle 0 with direction b"- b' - , namely

(4) s = ARGMAX I[!-b -1]V[Pj -]IlP--l1.
3

which can be carried out in m(n + 3) operations assuming IFp - 11 is preprocessed. The

triangle b"- , P., b will be labeled ABC. The next approximation point H = bV is the

foot of perpendicular dropped from C onto the side AB of the triangle ABC. From the

figure, it is clear that H is a weighted convex combination of A and B with weights

proportional to cos 02 and cos 01, i.e.,

(5) b' = (cos 02 b'-' + cos 01- P,)/(cos 02 + cos 01),

X = (cos 02 -X' 1 + cos 81 U,)/(COS 02 + cos 02),

where Us is the unit n vector with 1 in component s. cos 01 and Cos 02 are computed by

(6) COS 02  (b-Ps)T (bt- 1 - P) (P - bt-)T(-bt-1)

(6)Ic - PI lbt - P ,11 cos -1 lI bt.- 111 -_bt- .1

In order to determine the rate of convergence, note 0 <7 r/2 because if, on the

contrary, 0 > 7r/2 then all points Pj would lie on one side of the hyperplane through b

orthogonal to b'-1 - b implying that b = 1' for the i-th sequence lies outside the convex

hull of the Pj's contrary to our assumption that all points located at a distance r or less

from the origin are in the set of feasible b (i.e., 1' by construction lies in the interior of

the set of feasible b C S, at a distance r/(m + 1) from the boundary of S1. To simplify

the notation, let

At-, = Ib' - ill and At = lbt - ill,

then

(7) At = At- 1 sin O1and A, = liP. - bll sin 02

Therefore, noting 8l +02 = 0 < '/2,
22

At_ + A Sin2 01 + sin 2 021.

lip.- i nll+ 2

Recalling that diameter of the hypersphere is 2, it follows that liP, - bll < 2 and

therefore for r = 2, 3,..., t:

( 8 ) 
(A , (+ < .
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Comment: These inequalities can be made tighter when b =0 because iP. - 1=
iPoI = 1. If so, (8) can be replaced by (A,/A_.) 2 + A2, 5 1 and the development that
follows can be modified accordingly with the conclusion that if the von Neumann
iterative process is applied to the case b = 0 instead of to 1' 60 an approximation b
such that Ibt < p can be attained in less that 1/p 2 iterations (instead of less than 4/p2

iterations).

Dividing (8) through by (A,) 2 for r = 2,..., t:

(1/A._1)2 + (1/4) < (1/At) 2

(1/Ar 2)2 + (1/4) < (1/At 1)2

(1/A) 2 + (1/4) < (1/A 2)2.

Summing the above, canceling terms common to both sides of the sum and, recalling

A, < 2, we have

(10) (1/A) 2 > (1/4) + (t - 1)/4 = t/4.

We conclude that t < 4/A2 iterations, i.e. less than 4/p 2 iterations would be needed for
the ith sequence to terminate by reaching bt = , an interior point of the p-ball centered
at Vi. Since p = r/(m + 1) and there are (m + 1) p-balls, the upper bound on

(11) iteration count < 4(M + 1)3/r 2.

What remains to show is that the (m + 1) x (m + 1) system (3) can be solved, that the
solution A is unique, and that A7 = (A1, A2,.. ., Am+) > 0.

Existence of Separating Hyperplanes: Let y = (Y1,Y2," ,Ym) represent a general
point in Rm . The equation of any hyperplane through the origin has the form aty = 0.
This hyperplane is said to separate y' from Y/2 if aTy' and aTy 2 are of opposite signs.

Fact 1. Each hyperplane (bi)Ty = 0 for i = 1,2,..., m separates any point in the p-
ball centered at 1' from any point lying in any of the other p-balls centered at b.

Proof: Because of the m + 1 fold symmetry of the equilateral simplex it is sufficient
to demonstrate that the hyperplane (bm+ )Ty = 0 separates ;m+' from bm where

II~+ - bm+11l < r/(m + 1) and 11;m - mll < r/(m + 1). The coordinates of b"'+' and bn
defined by (1) are bm+ = (0,0,...,rm/(m + 1))T and b m = (0,0,.. .,r FT/+m +1,
-r/(m + 1))z. The hyperplane (0m+1)TJ=0 reduces to (0,...,0l)y=U =0. Letting
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bm+-+ u where Jul <r/(m + 1), we have U. l9"'-b+ = b+l + u.>

rm/(m + - r/(m +1) >0 since Iu=+,l <r/(m + 1). Letting bm = b" + v where

S< r/(m+ 1), we have Ur.km = +v, <-r(m+1)+r(m+1) =0. Thus Umb' 1

and U,. b1 have opposite signs and so the hyperplane U,. = 0 separates P,+' from W'. I

The Separating Hyperplanes Theorem below states conditions which imply that the

points , 21 ,... 'P+' are the vertices of a simplex containing the origin in its interior.

That these conditions are satisfied follows from Fact 1.

Separating Hyperplanes Theorem: Given (1) that (jb, 2,...m+ ) are any (m + 1)

vertices of an m-dimensional simplex t containing the origin; given (2) that aiy = 0 for

i = 1,2,...,m+ 1 are the equations of m+ 1 hyperplanes separating 1' from b for all

j 7 i; and given (3) any m + 1 points b1,b 2,...,b"+l such that each hyperplane a'y = 0

separates P (on the same side as i) from b for all j j i; then L1,L2 .... ,L are the

vertices T' of an m-dimensional simplex that contains the origin as an interior point.

Proof: Since the simplex associated with t contains the origin, we know there exist

ii -> 0, A. > 0 such that

(13.2) E~i+ Ei = I.

Before continuing with the proof, we show two more facts:

Fact 2. If (A,A) is a feasible solution to (13.1), (13.2), then i i + iA > 0 for all i.

Suppose, on the contrary, Ak = 0, k = 0 for some k. Multiply (13.1) on the left by ak;

recall, by assumption, o kb < 0 and akbj < 0 for all j 3 k. We have

(14.1) F_(akbi)A, + E (akbi)A = 0

(14.2) E Ai -FE xi = 1,
jok jik

implying, that (14.1) is the sum of non-negative terms (not all zero by (14.2), a

contradiction. I

Fact 3. If T is any simplex containing the origin whose vertices i are separated

from the remaining vertices j # i by a hyperplane a'y = 0 for each i, then T contains

the origin strictly in its interior. 1
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Fact 3 follows from Fact 2 by setting ' = b' for all i.

Continuing with the proof of the separating hyperplanes theorem, define S and

Um+ 1 by

(15) = 1 11UM+= 0 .

Since T are the vertices of an m-dimensional simplex by assumption, it means that S is

non-singular and that SA = Um+l can be solved for 1 and, when solved, A > 0. From

Fact 3 it follows that A > 0. We view S as a feasible non-degenerate basis and consider

as an incoming non-basic column. We assert it will replace [ in the basis because,

on the contrary, if it replaced some column k j 1 in the basis, it would imply after the

replacement that both Ak and Akare 0 in a feasible solution, contrary to Fact 2. By

replacing in turn basis columns b2 by [12 [13] by ['3J, etc., we arrive at the

conclusion that ' are the vertices of a simplex containing the origin. It then follows

from Fact 3 that this simplex contains the origin as a strictly interior point. I

This completes the proof that the (m + 1) sequences converge to m + 1 points Pi in

less than 4(m + 1)3/r 2 iterations. By applying the weights Aj > 0 to the corresponding Ti,

we generate the exact solution x to the Phase I linear program.

One final remark: Just because an algorithm is polynomial does not necessarily

make it practical. The von Neumann algorithm has a poor convergence rate. Like the

simplex method each of its iterations requires about n6 multiplications and additions

where 6 is the density of non-zero coefficients. When applied to (m + 1) perturbed

problems as we do in this paper, we obtain an upper bound of 4(m + 1)3/r 2 iterations

where 0 < r < 1. The moral of this tale is that, like gunners, we may do better by first

bracketing the target and then applying a final correction.
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